
Some ideas for stimulating cross-curricular STEM through dynamics experiments with BBC micro:bits

Adrian Oldknow adrian@ccite.org 9th January 2017

The BBC micro:bit has been distributed free to 1 million 11-year olds in the UK, and is now on sale, together

with battery pack and USB cable, for c£15. Most of the educational resources for the micro:bit concentrate

on programming the device using blocks (e.g. Microsoft’s PXT editor), Python, Javascript or C++. This article

contains some simple examples to help interested readers (students, teachers, parents and others) to make

a start with the micro:bit (or m:b for short) for what is sometimes called `physical computing’. It also

considers ways in which the m:b can be used to collect data and transmit for scientific experiments. We will

start with a simple (free) example which doesn’t even need a real m:b!

Experiment 1: turning the micro:bit into a spirit-level

Enter the Microsoft PXT blocks editor from this link: https://pxt.microbit.org/. Create a new Project.

The `forever’ and `show string’ commands are in Basic blocks menu. `set to’ and `item’ are found in the

Variables menu. `if..then..else if..then..else’ is found in the Logic menu. `rotation’ is found in the Input

More menu. The divide block is found in the Math menu, and the compare block in the Logic menu. So how

does the program work? It continuously checks the angle being returned by the `pitch’ sensor. Dividing this

angle by 50 returns a value for the variable `item’ which you could read using the `show number’ command

from the Basic block. This is a single digit signed number between -4 and +4. We are just going to test

whether this is a positive, negative or zero number. If it’s zero we display the letter L for Level, if it’s

negative we display D for Down, and if it’s positive we display U for Up. Then we have a slight pause before

doing the job again. You test this with on screen emulator by clicking the mouse somewhere inside the

image of the m:b at the top left. Check that you can get it to display each one of the 3 letters. So this is a

way to use the m:b’s built-in sensors to control an output. It simulates the way a smart-phone or tablet

senses the orientation of the way in which you are holding the device – and so is able always to display text

in the right direction for you to read clearly. If you click on the `JavaScript’ icon you can see the text

equivalent of the Block program, shown below. Click on the `Blocks’ icon again to see the graphical version.

Click on `Projects’ again to save your project with a sensible name, like `Spirit Level’.

mailto:adrian@ccite.org
https://pxt.microbit.org/about
https://pxt.microbit.org/

In order to test the program `live’ you now need to

connect a m:b to the computer with the USB cable. The

computer will recognise the m:b as an external memory

device and give it a drive name such as `D:’.

When the hex file has finished downloading you can

right-click on it and select `Show in folder’. In my

`Downloads’ folder I find the new file called “microbit-

Spirit-Level.hex”. Now right-click on the file name and

select `Send to’, and then `MICROBIT (D:)’. The led under

the m:b should flash

as the code is sent to

your m:b. If this is

the first time you

have done this –

congratulations!

If you connect a

battery box, you can disconnect

your m:b from the computer. You

now have a program running

forever (maybe) in your own £15

autonomous device. If you press

the Reset button it will start

running again. If you disconnect

the battery the program will be

saved, and when you reconnect the battery your program will start running again.

All sorts of objects have microprocessors built into them to carry out such monitoring and other tasks. We

now tend to use the word “smart” to indicate that a device (phone, TV, fridge, house, car engine …) has an

in-built computer which can sense conditions and make actions depending on them. The technical phrase

for such devices is “embedded systems”. Embedded systems which can communicate with others via the

web are known as the “Internet of Things” or IoT.

The BBC has worked with its partners such as Microsoft, ARM, Lancaster University, the IET and Kitronik to

develop a versatile, powerful and robust little device which allows us to create our own electronic solutions

to problems and to design our own smart devices. This brains of the m:b is an ARM mbed processor which is

at the heart of many smart systems in current use. The m:b has also been designed to connect to external

electronic devices such as sensors and inputs so you can extend its capabilities.

For the next experiment we will build a physical electronics circuit to simulate room lighting with an on/off

and dimmer switch. You may already have suitable supplies of resistors, LEDs and other electronic kit. I am

going to follow one of the worked example projects in the Kitronik `Inventor’s Kit for the BBC micro:bit’. This

costs £25 and provides a very neat electronic workbench based around an edge connector and break-out

pins for the m:b, a large capacity `breadboard’ and a variety of gadgets and connectors.

Experiment 2 Dimming an LED using a potentiometer

https://www.kitronik.co.uk/5603-inventors-kit-for-the-bbc-microbit.html

The photograph below shows page 24 of the tutorial with the circuit diagram we need to build. On the right

is the assembled Inventor’s kit with the programmed micro:bit plugged into the edge connector, with the

battery boxed tucked away underneath. The coloured leads slip over the I/O pins connected to the m:b and

plug into holes in the bread board. We are using three I/O pins, 0, 1 and 2. Also the GND and +3V power

pins. The components are a push switch, a potentiometer, a red LED and a 47Ω ohm resistor.

Here is the program written in the current Microsoft PXT editor. I have called it `Dimmer switch’. We use a

variable called `light state’ to tell whether the LED is switched on (1) or off (0). So the first bit of code just

tells the m:b to use the push switch attached to pin P0 as a flip-flop to change the state of the LED.

The second block uses the potentiometer attached to the analog pin P1 to control the brightness of the LED

connected to the analog pin P2. To access the red commands use the Advanced blocks menu and then

select the Pins menu. When you have flashed the program to the m:b you can use the push button to switch

the LED on and off, and turn the spindle attached to the potentiometer to control the brightness of the LED.

The 10 well described experiments give a pretty good feel

for how to design and control your own circuits and

devices. There is now an increasing number of other fun

projects for use with micro:bits on the market. Here are a

few examples:

Kitronik’s `Line-following buggy’ at £26

DIMM and UFO from Binary Bots (m:b

included, £40 each)

Cheap sensors and accessories are available from

`microbit accessories’, such as head-phone

adaptors, a natty plant watering project and the

chick-bot robot. Using the head-phone adaptor you

can also attach speakers to the m:b. I also

recommend two other devices.

The Kitronik MI:power board costs £5 and provides a

robust casing for the m:b as well as compact power

from a coin battery.

To connect an m:b to a laptop via its Bluetooth Low Energy (BLE) radio I recommend

getting a plug-in USB BLE dongle from Picaxe at £12.

Using this we can read the m:b’s sensors directly through Clive Seager’s free S2Bot App

which supports many Bluetooth enabled devices

including m:b.

Experiment 3 Reading m:b sensors on a laptop using the

S2Bot App.

The instruction for using S2Bot with a m:b are here.

From the drop down menu select the device you want to

connect to – in our case the BBC micro:bit. Then attach

your m:b to the computer with the USB cable. Click on

the menu icon at the top right and select `Program m:b’.

https://www.kitronik.co.uk/5604-line-following-buggy-for-the-bbc-microbit.html
https://www.binarybots.co.uk/dimm-the-robot
https://www.binarybots.co.uk/binarys-ufo
http://microbit-accessories.co.uk/shop
http://microbit-accessories.co.uk/shop/music/headphone-adapter/
http://microbit-accessories.co.uk/shop/music/headphone-adapter/
http://microbit-learning.co.uk/bbc-microbit-plant-watering/
http://microbit-accessories.co.uk/shop/robot/chickbot-robot-kit/
https://www.kitronik.co.uk/5610-mipower-board-for-the-bbc-microbit.html
http://www.picaxestore.com/index.php/en_gb/bled112.html
http://www.picaxe.com/Teaching/Other-Software/Scratch-Helper-Apps/
http://www.picaxe.com/BBC-microbit

This will flash the BLE hex code to your m:b. You may be

asked to calibrate some of the sensors by twisting the

m:b about to create a large letter `O’ with the LEDs.

When you have done this you will see a happy face, and

you can detach your m:b and connect it to batteries.

Now you can click on `Scan for devices’ – which will give

a list of connectable devices which should include the m:b you want to use.

When the connection symbol turns from red to green you will see that readings

from many of the m:b’s on board sensors are now available. I am in my warm

dining room at 29° C and the micro:bit is sitting horizontally on the table pointing

North. The horizontal (x- and y-) accelerations are virtually zero (showing that

the m:b isn’t exactly horizontal, but very nearly!). The vertical (z-) acceleration is

-64 which corresponds to acceleration due to gravity (c9.81 ms-2) downwards. So

we now know how to calibrate accelerations by multiplying by a factor of

9.81/64 ≈ 0.153. Can you arrange the m:b so that the y-acceleration is +64, or -64?

Clive Seager has produced the S2Bot App to enable devices like the m:b to be recognised in MIT’s Scratch

(version 2) programming language. If you run the Scratch editor you should see that the second red light on

the App now turns green to show that Scratch is connected.

Experiment 4 Collecting data from the m:b’s sensors in Scratch

From the S2Bot App menu select the `New Scratch template’ option, and save the file `microbit_template’ to

a suitable folder. In Scratch use File and open the `microbit_template’. Select the `More Blocks’ menu and

you will see the m:b specific blocks now available to you. Ticking any of the black sensor blocks displays the

current readings on the Scratch display. My demonstration program uses some variables to control the

data-logging, and stores readings into lists. The data collected are times in seconds and raw accelerations

read from the z-accelerometer. All I am doing is shaking the m:b up and down a bit.

https://scratch.mit.edu/

Can you think of interesting things to do in this environment? Could you plot graphs from the data? Can you

use the m:b to control Scratch animations. There are some ideas in my `Switched On’ (the Computing At

School Group’s termly newsletter) article `Scratch Goes Ballistic’ on pp 12-13 of the Spring 2016 edition, as

well as on the STEM Learning site.

So we can use m:b with its sensors and Bluetooth connection to send data wirelessly to a computer.

There is an article about `Data-capture, modelling and simulation’ on the STEM learning site as well as other

materials. There are some Teachers TV videos which illustrate interesting approaches to cross-curricular

STEM, such as `Hard to teach: quadratics’, `Bath bombs and rockets’ and `Geometry from the playground’.

The big leap forward for the m:b in data-capture has come from Martin Woolley with his free Bitty Data

Logger App for Android and Apple. This enables you to stream live data to the App on your mobile device (in

my case a Samsung Galaxy S6 Android smart phone and an Apple iPad Pro). The App graphs the data and

saves it as a CSV file. This can be uploaded to a temporary file-store in the Cloud. The file can be

downloaded to a laptop and be opened by a spreadsheet such as MS Excel. For more sophisticated

modelling the data can then copied and pasted to other tools such as the free GeoGebra software – and

merged with data captured from other sources, such as video data captured from the free Tracker software.

Currently this supports telemetry from the m:b’s accelerometer, magnetometer and temperature sensors.

Soon this will extend to external sensors attached to the m:b’s I/O pins. This opens up a wide range of

possibilities to facilitate data-capture from experiments. These might be undertaken in a school’s science

labs, or by students capturing their own data during sporting and other activities, inside or outside school.

Let’s look first at a simple cooling model – where I will take the m:b from the warmth of the dining-room into

the fridge to chill off, before returning it to the warmth again. The Bluetooth signal is strong enough to be

received once the fridge door is shut!

In order to get data tansmitted from the m:b

by Bluetooth you need to flash some code to it

first. The Bitty hex file is here. I will be using a

Windows 10 laptop for the modelling. The hex

file is downloaded into the Downloads folder.

Plug in a m:b using the USB cable. Find the hex

file (bdl_v2_no_pair_max_power.hex) and

right-click on it. Select `Send to’ and then

`MICROBIT (D:)’. When it has finished downing

to the m:b you will be asked to make a circle

using a single flashing LED. Once you have done this by twisting the m:b around, you will have calibrated the

magnetometers and compass. Open the Bitty App on your mobile device. Here is a simple first experiment.

Experiment 5 Sensing cooling and heating

with m:b and Bitty Data Logger App

Click on SCAN to see which micro:bits are

listening. Clicl on the m:b you want to

connect with. The “AO bit’s” display will

now show “C” to verify the connection.

http://community.computingatschool.org.uk/files/6917/original.pdf
https://www.stem.org.uk/system/files/community-resources/2016/09/Sensing%20with%20Scratch.pdf
https://www.stem.org.uk/system/files/community-resources/legacy_files_migrated/10048-Data-capture%2C%20modelling%20and%20simulation.pdf
https://www.stem.org.uk/elibrary/community-resource/5495/data-capture-modelling-and-simulation
https://www.stem.org.uk/elibrary/community-resource/5495/data-capture-modelling-and-simulation
http://www.proteachersvideo.com/Programme/19119/hard-to-teach-secondary-maths
http://www.proteachersvideo.com/Programme/28859/ks3-cross-curricular-bath-bombs-and-rockets
http://www.proteachersvideo.com/Programme/37909/secondary-maths-mathematics-for-all-geometry-from-the-playground
http://bittysoftware.com/
http://bittysoftware.com/apps/bitty_data_logger.html
http://bittysoftware.com/apps/bitty_data_logger.html
https://play.google.com/store/apps/details?id=com.bittysoftware.bittydatalogger
https://itunes.apple.com/gb/app/bitty-data-logger/id1169359831
https://drive.google.com/uc?id=0B2Ud_NaMFsQSRzdrZzJNeDNhdkE&export=download

Then you can use OPTIONS to select which data you want to collect. I only want to display temperatures

against time. So tick the Temperature Data box. I don’t really understand the next two boxes, so I’ll leave

them with their default values. Tick the CSV box to save the

results in a format compatible with e.g. MS Excel spreadsheet.

Now go back to main graph page and press the green START button, which turns red as data is being

collected. Move to the fridge, open the door and pop your m:b in. When you think it's cool enough, take it

out and return to room temperature. When the m:b is sufficiently warm, press the STOP button to finish

data collection. Now press

RESULTS to see information

about theCSV data file you have

created. Ignore the last few

entries which are specific to the

Bloodhound model rocket car

competition. Use UPLOAD to

send the file to the Cloud – which

will give you a temporary link to a

file store e.g.

https://file.io/SFu86T.

Now you can type that URL into your

computer’s web browser and download

the CSV file. It will be saved in the

Downloads folder. Right-click on it’s

name and select “Open with” and chose

MS Excel. You will find quite a few rows

of title and accelerometer stuff before

the rows containing temperature data.

Delete these. I have inserted an

additional column B, with the formula

for B2 as “=B1/1000”. Dragging this

down converts time from column A in milliseconds to time in column B in seconds. Click on column B and

shift-click on column C. Select Insert and Scattergram to make a graph of the data. Now we can see what

the “temperature polling frequency” was all about. Instead of reading a temperature value at a fixed

sampling rate, such as once per second, you set the temperature increment and it records the time taken to

https://file.io/SFu86T

reach the next increment. So we have asked it to read the thermometer just once every second and to

record how long it takes to reach the next whole number.

For a smoother set of results we could

use a faster sample rate and a smaller

threshold. Excel has the facility to

compute a `trend-line’ to fit the data.

So we can extract the data from the

cooling part of the experiment and see

that an exponential curve gives a pretty

good fit to the data. But Newton’s `law

of cooling’ tells us that we need to take

the ambient temperature of the fridge

into consideration. So let’s see how we

can model this in GeoGebra using a slider. First copy the data from the time and temperature columns for

the cooling phase. Open a new GeoGebra window. You will need 3 veiws: Algebra, Spreadsheet and

Graphics – and also the Input Bar. Past the data into cell A1 of the Spreadsheet. Click on column A and shift-

click on column B. From the second icon select the `2-variable regression analysis’ option. This will open a

pop-up window from which you can select the regression model, e.g. exponential. Then right-click in the

window and select “copy to graphics view”. This will create a scatterplot of your data together the graph of

the curve fit function g(x) – both shown in red.

You can create the point A on the y-axis, and the line perpendicular to the y-axis at A. Creat the origin B(0.0)

and the segment BA. The value h shows the length of BA, which we will use for the fridge’s ambient

temperature. Now select create column C using the formula “C1=B1-h” and copy it down. Click on column C

https://www.geogebra.org/download

and Ctrl-click on column A. Select “2-variable regression” and fit another scattergraph and its exponential

regression q(x) – shown in blue. In the Input bar define the new function r(x) = h + q(x) – shown as the

mauve dashed curve. See the effect of dragging A up and down the y-axis. So we have now used the

micro:bit as a £15 digital thermometer for data-capture with the free Bitty Data Logger App, and anlaysis

with the free GeoGebra multi-platform software.

Of course the real fun comes when things are put into motion. But using the accelerometers alone in the

m:b can produce some unexpected results as we shall see. The most revealing results are obtained when we

merge data captured from the m:b accelerometers with that captured from video clips of the experiments

using the free open-source Tracker software for video analysis. For a simple dynamical example here is m:b

accelerometer data captured from a toy car rolling under friction.

Experiment 6 Accelerations of a toy car rolling

under friction using Bitty Data Logger

The m:b is set up so that the z-axis is vertical

and the y-axis is along the line of travel. We

would expect, under perfect conditions, that

the sideways (x) and vertical (z) accelerations

would be constant at zero ms-2 and that once

the car is give an initial thrust its velocity will

steadily decline until it come to rest. So there

are several things to discuss about the graphs

displayed by Bitty. The yellow graph is not

constant which show it must have bumped up

and down a bit during the run. Also its mean

value is -1. So we can deduce that the units of

acceleration are expressed as multiples of g, rather than in ms-2. Also that at rest the vertical `acceleration’

is shown as negative g, even though there is no vertical motion. So it is really measuring force rather than

change in velocity! The red graph wiggles a small amount all over the place – again probably due to it not

running quite smoothly. As we would expect, the blue graph shows an initial positive spike representing the

thrust in the y-direction, and after that it wiggles about in mainly negative values. So the data really doesn’t

tell as very much. For comparison here is the video data captured with Tracker using a 30 fps video clip.

In the experiment there is a

1m yellow folding rule laid

out as a frame of reference –

marked in blue. The axes are

arranged so that x-axis lays

along the path of the car.

Position data of the front

wheel is captured in the

table. The y-data values have

been removed and numerical

values for the velocities and

acceleration computed. The

http://physlets.org/tracker/

three graphs displayed are for the displacement, velocity and acceleration against time. The first two plots

conform to our intuition, but the accelerations are as devoid of meaningful information as those recorded by

the micro:bit.

Here are some sources of information, tutorials

and worked examples of Tracker used for video

analysis of motion. The first is a screen shot

taken from the report of a CDP session run by

Ian Galloway about a model Bloodhound SCC

rocket car running on a wire in a car park at

Southampton University. The results are

pretty similar to those with the unpowered

friction car we’ve already seen.

The second is from a report I wrote on the

launch of the Manchester Bloodhound SSC

Education Centre in Manchester where

compressed air ballons are being run on strings

to see the effect of shape on air resistance.

You could easily suspend a micro:bit from the

balloon. Another simple experiment is to make

different size parachutes to investigate terminal

velocity. This would be an ideal exploration with

both Bitty Data Logger and Tracker video

analysis.

Dr. Tony Houghton and I developed an extensive

MOOC on the use of Tracker and GeoGebra for

Analysing Sporting Performance. This includes

many video clips, Tracker files and GeoGbra files

for you to practice with.

Some of these were taken during a Bloodhound

school rocket car competition between some

West Sussex secondary schools. Others were

used at Bohunt School’s STEM festival for

families. Further examples are here.

There is an extensive collection of STEM material

produced by Ian Galloway, Linda Tetlow and me

such as the Maths In Motion book which contains

many example of the use of Tracker which could

easily be adapted for use with the Bitty Data

Logger App and the GeoGebra software.

https://www.ncetm.org.uk/public/files/8411533/Intel+car.pdf
http://www.bloodhoundssc.com/sites/default/files/Launching_the_Bloodhound_Centre%5B1%5D.pdf
https://sites.google.com/site/cciteasp2/home
https://www.stem.org.uk/system/files/community-resources/legacy_files_migrated/10048-Data-capture,%20modelling%20and%20simulation.pdf
https://www.stem.org.uk/system/files/elibrary-resources/2016/01/TI-Nspire_STEM_MathsMotion.pdf

Our final worked example is for motion in a horizontal circle using a USB turntable connected to the laptop.

Experiment 7 Motion in a horizontal circle using Bitty Data Logger, Tracker and GeoGebra

Here we have set up Bitty to collect and graph

data from the x- and y-accelerometers from a

micro:bit mounted horizontally on a turntable

rotating at 33 1/3 rpm. As expected the z-

acceleration (not graphed) is constant at -1 (in

units of g). The x- and y-axes are fixed in the

frame of reference of the rotating m:b – and

appear to be constants. The red acceleration is in

the positive y-direction which is the instantaneous

direction of travel of the m:b and looks to have a

constant value of about +0.05g, or around 0.5 ms-

2. The blue acceleration is about -0.18 in the y-

direction – showing a constant acceleration

towards the centre of about -1.8 ms-2.

Uploading the Bitty data CSV file and then

downloading from the https://file.io/xxxxxx URL

we can open this in MS Excel. After a bit of tidying

up we can plot the y- and z-accelerations against

time in seconds.

Fitting linear trend-lines to the data gives

values of +0.0458 and -0.1772 as the

tangential and radial accelerations. The

centre of the m: b is around 0.08 from the

centre of rotation. The turntable is rotating

at a constant rate of 33.33 revs per minute.

Now would be a good time to read up on the

physics of circular motion and to see how our

results match up to the theory.

We can also easily capture the motion on a video clip and analyse it in Tracker.

https://file.io/xxxxxx

Here the axes are set in relationship to the static turntable, and so the x- and y- directions are not aligned

with the directions of the m:b’s accelerometer. Maybe it is possible to have a revolving frame of reference

in Tracker – but I have yet to discover how to do that! As well as creating a table of times and coordinates,

Tracker will estimate a pretty wide variety of additional data based on these, I have collected quite a

number above including r – the distance from one of the LEDs to the centre. This is, as expected, pretty well

constant – the error coming from either camera shake or inaccuracies tracking the particular pixel I am

concentrating on. ω is the angular velocity in degrees per second, which should also be a constant for our

turntable spinning at 33.33 rpm. θ is the angle turned through in degrees. V is the value of the tangential

velocity. ax and ay are the components of the acceleration in the x- and y-directions of Tracker’s frame of

reference. Knowing the angle θ we should be able to translate accelerations between the two different

frames of reference. For more extensive analysis we can copy and paste from either the Excel or Tracker file

(or both) into a GeoGebra spreadsheet.

For a worked example see the spring-mass (SHM) system analysed here

.

Further ideas. If you are building a model rocket car for the Bloodhound “Race to the Line” challenge can

you use the Bitty Data Logger to capture accelerations – and maybe also use video and Tracker. How about

some other experiments, like dropping a bouncy ball with an micro:bit inside? Or motion in a vertical circle

with a bicycle wheel? Or a simple pendulum with a micro:bit attached? Or putting a m:b in your pocket and

running, jumping, bouncing etc. Or Velcro-ing m:b to apparatus like a sled, skate-board, bike etc.

Whatever you try, can you post some information on a site such as this.

https://www.stem.org.uk/elibrary/community-resource/289686/modelling-microbit-data-bitty-data-logger-app
https://www.stem.org.uk/community/groups/270063/student-digital-ambassadors

